首页 | DV动态 | 数码产品 | 视频采编 | 网站建设 |
【收藏DV】
  最近3月排行
·许小年:碎片化信息让人变得无知,要少看手机多读书
·许小年:浅析日本失去的30年——兼评“资产负债表衰退”
·985、211、双一流
·上了大学也没体面工作,我们是否还要上大学
·赤马劫
·高中英语-单词表
自动驾驶技术技术细节
2019/10/21 14:14:54
 

自动驾驶分为6个等级:
Level 0:人工驾驶,无驾驶辅助系统,仅提醒。
Level 1:辅助人工驾驶,可实现单一的车速或转向控制自动化,仍由人工驾驶(如定速巡航、ACC)。
Level 2:部分自动驾驶,可实现车速和转向控制自动化,驾驶员必须始终保持监控(如车道中线保持)。
Level 3:有条件自动驾驶,可解放双手(hands off),驾驶员监控系统并在必要时进行干预。
Level 4:高级自动驾驶,可解放双眼(eyes off),在一些预定义的场景下无需驾驶员介入。
Level 5:全自动驾驶,完全自动化,不需要驾驶员(driverless)。

目前自动驾驶使用的传感器系统主要有三种类型:摄像头、雷达和激光雷达:
1、摄像头是自动驾驶必备的传感器,包括前视、后视和360度摄像系统,后视和360度摄像头主要提供360度外部环境呈现,前视摄像头主要用于识别行人、车辆、道路、交通标志等。
2、雷达(RADAR),自动驾驶需要多个雷达传感器,其功能是无线探测和测距,主要用于盲点检测、防碰撞、自动泊车、制动辅助、紧急制动和自动距离控制等应用。目前的雷达系统主要基于24GHz和77GHz,相较于24GHz,77GHz在测量距离和速度时具有更高的精度,以及更高的角分辨率,且还具备天线尺寸小、干扰小等优点。
3、激光雷达(LiDAR:Light Detection And Ranging),是一种基于激光的系统,除发射器(激光器)外,系统还具备高灵敏度的接收器。LiDAR主要用于测量静止和移动物体的距离,并通过处理提供所检测物体的三维图像。
LiDAR应用于自动驾驶所面临的挑战是,如何克服在雨雪、雾、温度等环境影响下识别较远距离的物体,同时,LiDAR成本太高,目前不适合汽车领域的大规模部署。

但以上传感器致命的弊端是,当汽车横穿十字路口时,自动驾驶如何预知从两侧高速驶来车辆;由于易受雨、雪、雾、强光等环境影响,摄像头能始终准确识别指示牌和红绿灯;当自动驾驶在高速路上以130公里/小时(36米/秒)行驶时,因无法安全地检测到前方超过120米距离外的停车,将导致3秒内从时速130公里紧急制动,人、车很难承受;还有,如前方的大卡车挡住了视线,而对面正驶来一辆汽车,此时要超车,毫无疑问是非常危险的。

总之,道路环境异常复杂,雷达、摄像头和激光雷达等本地传感系统受限于视距、环境等因素影响,要实现100%安全性,自动驾驶需要弥补本地传感器所欠缺的感知能力,这就需要C-V2X

C-V2X(Cellular vehicle-to-everything),车与外界的信息交换的基于蜂窝网络的车联网技术。

与雷达、激光雷达等传感器不同,V2X是一种无线传感器系统的解决方案,允许车辆通过通信信道彼此共享信息,它可检测隐藏的威胁,扩大自动驾驶感知范围,能预见接下来会发生什么,从而进一步提升自动驾驶的安全性、效率和舒适性。C-V2X被认为是自动驾驶的关键推动因素之一。

V2X通过通信网络共享信息,具有“耳听八方”的能力,此时汽车显示屏上会提示前方有车辆,并启动减速和转向,安全通过。

C-V2X技术简介
V2X主要包括V2N(车辆与网络/云)、V2V(车辆与车辆)、V2I(车辆与道路基础设施)和V2P(车辆与行人)之间的连接性。

硬科普:为什么自动驾驶需要5G
2015年,3GPP在Rel. 14版本中启动了基于LTE系统的V2X服务标准研究,即LTE-V2X,国内多家通信企业(华为、大唐、中兴)参与了LTE-V标准制定和研发。2016年9月,首版涵盖了V2V和V2I的V2X标准发布;2017年6月,进一步增强型V2X操作方案发布。
在Rel.14中,V2V通信基于D2D(Device-to-Device)通信,其为Rel.12和Rel.13版本中的Proximity Services (ProSe)近距离通信技术的一部分。新的D2D接口被命名为PC5接口,以实现可支持V2X要求的增强型功能,这些增强型功能包括:支持高达500Km / h的相对车速、支持eNB覆盖范围内的同步操作、提升资源分配性能、拥塞控制和流量管理等。
在Rel.14中,LTE-V2X主要有两种操作模式:通过PC5接口点对点通信(V2V)和通过LTE-Uu与网络通信(V2N)。
基于PC5接口的V2V通信也包括两种模式:管理模式(PC5 Mode 3)和非管理模式(PC5 Mode 4),当网络参与车辆调度时称为管理模式,当车辆独立于网络时称为非管理模式。在非管理模式下,基于车辆间的分布式算法来进行流量调度和干扰管理;在管理模式下,通过Uu接口的控制信令由基站(eNB)辅助进行流量调度和干扰管理。
C-V2X还将持续平滑演进到5G V2X,将对功能进一步增强,以支持低延迟和高可靠性V2X服务。
除了PC5和Uu接口,C-V2X技术构架还包括V2X控制功能、边缘应用服务器和V2X应用服务器。
V2X控制功能(V2X control function)位于核心网,其为实现V2X通信向UE提供必要的参数以执行相关网络动作。
V2X应用服务器可部署于网络之外,由车企、移动运营商或第三方来运营,从而跨运营商跨车厂,这也解决了过去车企担心的依赖C-V2X会导致自动驾驶业务被电信运营商所控制的问题。
边缘应用服务器靠近数据源部署,解决了时延和网络负荷问题,将在许多V2X用例(比如实时高清地图更新等)中发挥重要作用。

1、基于5G近实时的高清视频传输,V2N和V2V互补(V2N2V)
2、5G网络切片技术提供始终如一的QoS保障。
与互联网“尽力而为”的数据传输不同,网络切片可提供始终如一的低时延和高速率服务保障,这对于安全性要求极高的自动驾驶领域尤为关键。比如,当汽车行驶于网络拥塞区域(比如演唱会、体育场附近),网络切片技术仍然能优先保障汽车通信的高速率和低时延性能。
3、边缘计算是自动驾驶的未来。
5G核心网控制面与数据面彻底分离,NFV令网络部署更加灵活,从而使能分布式的边缘计算部署。边缘计算将更多的数据计算和存储从“核心”下沉到“边缘”,部署于接近数据源的地方,一些数据不必再经过网络到达云端处理,从而降低时延和网络负荷,也提升了数据安全性和隐私性。
这对于时延要求极高、数据处理和存储量极大的自动驾驶领域而言,重要性不言而喻。未来对于靠近车辆的移动通信设备,如基站、路边单元等或均将部署车联网的边缘计算,来完成本地端的数据处理、加密和决策,并提供实时、高可靠的通信能力。

5G用于自动驾驶有两点需要解决:
1,网络频繁切换。
5G无线频率更高、覆盖范围小,未来城市的每个灯柱或将就是一个小基站,必然会带来基站间频繁切换的问题而影响自动驾驶能力,怎么破?
C-RAN(Cloud RAN)构架可大幅降低切换开销。
2,天线怎么安装?
今天的5G手机面临的一大挑战是,天线太多,手机空间太小。未来的汽车也将面临这样的问题。
未来的汽车包括以下无线系统:
LTE V2X(5.8-5.9GHz)、
卫星定位(1.57GHz,1.1-1.2GHz,1.6GHz)、
蓝牙(2.4GHz)、WIFI(2.4GHz,5GHz)、
3G/4G网络(700MHz-2.6GHz)、
雷达(76-77GHz)、
5G NR(3.3-4.9GHz、6-80GHz)、
无线充电等等。
这么多天线系统,在安装时必须考虑汽车的挡风玻璃、金属壳对无线信号的衰减影响,需要解决。
新材料天线、与车体集成的天线将应运而生。

(DVOL本文转自:中国DV传媒 http://www.dvol.cn)

欢迎关注微信公众账号:手机烟台(mYantai)

 

  上一篇:【综合】5G:将带来哪些变革与机遇?持续更新...
  下一篇:关于病毒等一些概念、专属名词解释
      更多...
::打印本页 ::      ::关闭窗口::


版权所有© 数码在线网站 DV OnLine©  鲁ICP备12016322号-1